Choices in hand protection have grown significantly during the past 30 years.

How often do you think about your hands? Typically, our hands are an afterthought to our daily routines, especially when it comes to protecting them. But could you easily go about your daily tasks without the use or even limited use of your hands? Most of us could not, but more importantly, none of us want to find out.

According to the U.S. Bureau of Labor Statistics data for 2016, of all nonfatal occupational injuries and illnesses involving days away from work, 13 percent were for hand injuries. And 20 percent of disabling workplace injuries involve hands.

Taking a closer look at the data, we see nearly 70 percent of hand injuries occur because the worker was not wearing gloves. What does that mean for the other 30 percent? It may mean they were wearing the wrong gloves. As odd as it may seem, wearing the wrong gloves can be just as dangerous as wearing no gloves at all. Clearly, there is room for improvement when it comes to protecting workers' hands.

There are thousands of different styles and types of gloves and more than a handful of new and updated standards addressing hand protection. With all these choices and new and updated standards to review, it's no wonder many people find it difficult to choose the correct hand protection.



First, Understand All of the Potential Hazards


There are numerous things to consider when choosing hand protection. Questions such as "What cut level do you need?" "Do you need impact protection?" and "What happens to the gloves if they’re exposed to high heat or a short-duration fire?" are all a good place to start.

This is where a job task analysis can be critical. Thoroughly understanding the task that needs to be done and all hazards associated with that task are critical to choosing the correct hand protection.

A job task analysis should start with the worker or safety manager (preferably both) taking time to understand all of the possible hazards associated with the task. It is helpful to have a certified industrial hygienist brought in to assist with the analysis. Sometimes, it's beneficial to involve an employee who performs different tasks to gain perspective from someone who has not become complacent to the potential hazards of the task being evaluated.

Taking time to acknowledge all of the potential hazards and gain the information needed to make an informed decision about choosing the correct personal protective equipment, including hand protection, often can save a worker from a serious injury, or even potential death, and should always be a critical component of any safety culture.

Second, Understand the Different Standards


After determining the possible hazards associated with the task, the next step is to understand which standard or standards apply and which one you are referencing so that you can make an informed decision when choosing hand protection.

This can be a daunting task because existing standards are regularly being updated and new standards are being issued. It's an important, and often difficult, responsibility to stay informed about all the changes in standards. Consider the fact that within just the past year, two PPE standards have been updated with changes that affect glove testing and classification; and one new glove standard will be issued later this year. These are in addition to the major changes that the industry saw in 2016 when the ANSI/ISEA 105-2016 handbook was issued.

Consulting with an expert who can help you navigate new and updated standards can be invaluable.

Holding Gloves to the Same Standard: Changes to NFPA 2112


In 2018, NFPA 2112, Standard on Flame-Resistant Clothing for Protection of Industrial Personnel Against Short-Duration Thermal Exposures from Fire, was updated to also include items such as balaclavas, hoods, and gloves. Some think of NFPA 2112 as the "thermal manikin standard," but this standard contains many more test methods. In fact, gloves are not even covered under the thermal manikin test.

Gloves are covered under three other test methods:


  • heat transfer performance test to determine how gloves would react to a combined convective and radiant heat source
  • right-angle test to determine flame resistance of the material
  • heat transfer test (oven test) to determine shrinkage in a hot air environment

    Testing Gloves for Impact Protection with Changes to ANSI/ISEA 138


    The International Safety Equipment Association (ISEA) has issued a new standard in 2019 enabling workers to determine the impact protection of gloves (ANSI/ISEA 138, American national standard for performance and classification for impact
    resistant hand protection).

    SOURCE:

    https://ohsonline.com/Articles/2019/06/01/More-Choices-More-Challenges-for-Choosing-Hand-Protection.aspx?admgarea=ht.HandProtection&Page=1